

383:(+)-cis-Trikentrin B

Polycitor

275: Dictyodedrin

Dictyodedrilla

Theory

Charles Friedel (1832-1890)R-C≡Ō: -AICI₄

acylium cation

Reaction

Ferrocene

Glassware/instruments

6 Tube Centrifuges

12 Tube Centrifuges

24 Tube Centrifuges

Balanced Rotor Loading

Proper Bucket Loading

Chemicals

Chemicals	Appearance	MW (g/mol)	Equivalent	Amount	Note
ferrocene	Orange pwoder	186		0.1	
AICI ₃	yellow powder	133		0.15 g	
methylene chloride	Clear solution			solvent	Density?
Acetyl chloride	Clear solution			varied	Density?
NaOH				Neutralizer	
sodium sulfate	Drying reagent				
acetylferrocene		228			
diacetylferrocene		270			

Column Chromatography

Separate a mixture of compounds based on polarity

- Compounds will pass through and stick to polar silica
- Mobile phases with increasing polarity will pull down every compound faster

 Each compound with a difference in polarity will reach the bottom of the column at a different time

Column Chromatography

Column Chromatography

https://youtu.be/MM2F1gIzpVg?t=3

Identification of Products via Melting Point and NMR

- Experimental melting points (MPs) can be compared to literature MPs to determine identity
 - Experimental MP ranges will be lower and broader if they are impure
- Relative integration of aromatic and acetyl ¹H signals can be used to determine number of acetyl groups
- Presence of signal at the chemical shift corresponding to the acetyl CH₃ group indicates reaction success
- Online chemical databases and commercial sellers often have NMR spectra and MPs that can be used for comparison
- Important note while ferrocene is aromatic, the Hs tend to be around 4-5ppm, not 7-8 ppm
- Pay attention to symmetry when are 2 ferrocene ring Hs equivalent or not?

Report yields

0.538 mmol x 228 g/mol

	# drops of	Equivalents of	Mass and % recovery of	Mass and % yield of	Mass and % yield of
	Acetyl chloride	acetyl chloride	ferrocene	acetylferrocene	diacetylferrocene
0.02 mL	2	(to 0.538 mmol Fc)	(0.031 g x 100% / 0.1 g)	(0.036 g x 100% / ?)	(0.008 g x 100% / ?)
0.022 g 0.28 mmol		0.5 eq	31%	29%	?%
	4				
	6				
	8				
	10				
	12				