Prof K .R. Dunbar TA: Ellen Song

PLTL Worksheet #8: **Bonding in Transition Metals**

1. Review of SALCs

a. Consider 6 s orbitals arragned in an octahedral geometry. Deterine and draw for yourself the 6 SALCS that can be formed.

b. Determine the ways in which these SALCs can interact with the d orbitals, s orbitals and p orbitals of the metal center

notes) for an octahedral complex with sigma donor ligands

en still have the students dew it out to verty for themselves

Prof K .R. Dunbar TA: Ellen Song

2.

CFT: d-orbital splitting for an octahedral complex

a. To start draw the 5 d orbitals. Be sure to indicate your coordinate system!

b. Draw an arrangement of (negative) point charges in an octahedral geometry.

Draw each d orbital inside of the 6 point charges.

d. Picture these point charges moving closer and closer to the electron density of the d orbtials. Closer and better interation of the point charges with the orbtials results in greater e-e repulsion, which is destabilizing. Based on that, which d orbtials would you expect to be destabilized? Stabilized?

more electron classly of olded entering by of charges. (deschilted) drz duz dxy

~ Stabilized

Prof K .R. Dunbar TA: Ellen Song

4. CFT: d-orbital splitting for a square planar complex

a. Draw an arrangement of (negative) point charges in a square planar geometry.

b. Draw each d orbital inside of the 4 point charges.

c. Picture these point charges moving closer and closer to the electron density of the d orbtials. Closer and better interation of the point charges with the orbtials results in greater e-e repulsion, which is destabilizing. Based on that, which d orbtials would you expect to be destabilized? Stabilized?

Prof K .R. Dunbar TA: Ellen Song

- 3. CFT: d-orbital splitting for tetrahedral complex
 - a. Draw an arrangement of (negative) point charges in tetrahedral

b. Draw each d orbital inside of the 4 point charges.

c. Picture these point charges moving closer and closer to the electron density of the d orbtials. Closer and better interation of the point charges with the orbtials results in greater e-e repulsion, which is destabilizing. Based on that, which d orbtials would you expect to be destabilized? Stabilized?

(=,

dry drz dyz

PLTL Worksheet #9: Bonding in Transition Metals

1. More CFT (d-orbital splitting of a trigonal complex)

x to

a. To start, draw the 5 d-orbitals. Be sure to assign an consistent coordinate system!

b. Draw an arrangement of point charges in a trigonal arrangement

(imagme flat on xy plane)

c. Draw each d-orbital inside of the 3 point charges

Son wast most intended intended intended intended intended in the contraction in the cont

d. Imagine these point charges moving closer and closer to the electron density of the d orbitals. Which orbitals will be destabilized? Stabilized? Draw the relative energy levels of the orbitals.

d xy dri-yr

dxz dyz

Prof K .R. Dunbar TA: Ellen Song

- 2. More CFT (d-orbital splitting of a square pyramidal complex)
 - a. To start, draw the 5 d-orbitals. Be sure to assign an consistent coordinate system!

See previous

b. Draw an arrangement of point charges in a trigonal arrangement

(put the points ryfit along axons)

xty

c. Draw each d-orbital inside of the a point charges

d. Imagine these point charges moving closer and closer to the electron density of the d orbitals. Which orbitals will be destabilized? Stabilized? Draw the relative energy levels of the orbitals.

Prof K .R. Dunbar TA: Ellen Song

3. Ligand/Crystal Field Splitting Energy

a. Calculate the crystal/ligand field splitting energy for the following:

i.
$$d^{1} - \frac{2}{5} \Delta_{0}$$

ii. $d^{3} - 6/5 \Delta_{0}$
iii. LS $d^{5} - \frac{10}{5} \Delta_{0} + \frac{12}{7}$
iv. HS $d^{5} - \frac{1}{2} \Delta_{0}$
v. $d^{9} - \frac{3}{2} \Delta_{0}$

b. Discuss the general trends that exist for the magnitude of $\Delta_{\scriptscriptstyle 0}$

4. High Spin / Low Spin

a. Is there a trend between the pairing energy relative to the CFSE and the preferred configuration?

b. Which d electron counts are capable of giving rise to both low spin and high spin configurations? Show using orbital diagrams.

c. Predict, based on your knowledge of strong/weak field ligands, whether the following compounds will exist as high spin or low spin. Draw the orbital splitting diagram and show the electrons for each complex.

5. The complex [NiCl₄]²⁻ is paramagnetic with two unpaired electrons whereas the compound [Ni(CN)4]2- is diamagnetic. Deduce the geometries of the two compounds and explain the observations in terms of ligand field theory.

Prof K .R. Dunbar TA: Ellen Song

- 6. Term Symbols
 - a. Determine the ground state term symbol for each.
 - i. Cr³⁺ free ion 3

ii. d⁰ configuration

Max L=0 - 5 S +2 + 1 - 2 = 2 (0) + 1 $= 3^{+}$ free ion $1 \le 3$

iii. Fe³⁺ free ion

+ + 1 0 -1 -2 men V = 0 + 5

Spe multiplied 25 + 1

= 2(2.5)+1

= 5+1

= 6

: (5)