Lab 4: Unknowns

CHEM 242 – Section AA
TA: Hao Nguyen

Solid unknown Spectroscopy unknown Liquid unknown 皿

Primary functional groups: alcohols, aldehydes, amines, carboxylic acids, esters, ketones, or phenols.

Secondary functional groups: nitro groups, aromatic

rings, or halogens.

Tests:

Boiling point, melting point, solubility, DNP, cerium, ignition, Beilstein, Lucas, ferric chloride, Tollen, idoform, nitrous acid, sodium bicarbonate, ferric hydroxamate, ferrous hydroxide, ferric chloride, silver nitrate.

Derivative experiments:

3,5-dinitrobenzoate, phenylurethanes and naphthyl urethanes, bromo derivatives, semicarbazon, DNP, oxime, benzamide, acetamide, amine titration, anilide, toluidide, amide, acid titration, saponification.

Caution:

False positives and ambiguous results happen exist !!!

CHEM 242 Unknowns: Liquids and Solids

Order of Operations

Provided to you:

- MP/BP
- 2) Solubility neutral / base / acid
- 3) DNP / cerium
- 4) Beilstein / ignition
- 5) NMR / IR

Narrow down functional groups to 1-2

Next steps:

- 6) Classification tests
 - → Should know functional group at this point

Confirmation:

- 7) Derivatives
 - → Confirm structure by product MP

Approximate Schedule

- Day 1 introduction, classification tests
- Days 2-3 classification tests
 - You should be prepared to justify why you want to do a test
 - What relevant information do you already have?
 - What information would you get?
- Days 4,6 derivatives
 - You should be prepared to explain your reasoning
 - What functional group does it derivatize?
 - DRAW the general structure you are expecting
 - Explain why you chose that specific derivative (example oxime instead of semicarbazone or DNP)
- Day 5 discussion day
 - Choose either liquid or solid unknown
 - What have you done so far, what can you conclude?
 - What remains to be done?
- Days 7,8 finish anything that is missing if needed

Unknown functional groups

Your molecule contains at least one PRIMARY functional group:

Alcohol

Aldehyde

Amine

Carboxylic acid

Ester

Ketone

Phenol

Possible **SECONDARY** functional groups:

$$C = C$$

Alkene

Alkyne

Aromatic ring

Ether

Halide

Nitro

Solubility

Procedure: Add 1 drop to 2 mL solution.

Shake in H₂O, NaOH, HCl, NaHCO₃

POSITIVE: clear liquid phase

NEGATIVE

Solid: floating pieces, not shrinking

Liquid: "oil" bubbles (not air bubbles)

NOTES: may see partial solubility

may need to wait to dissolve

Compound —

Soluble

Insoluble

clarenium.blogspot.com

Soluble

Insoluble

NaOH

NaHCO₃ Soluble

HCl

Insoluble

Soluble

Insoluble

Bases

Soluble

Insoluble

Low MW → Turns red litmus blue—bases amines Low MW carboxylic → Turns blue litmus red—acids acids Low MW → Litmus is unchanged—neutral neutral Carboxylic acids → Strong acids Some phenols Phenols → Weak acids (PLKE) Amines Alkenes Esters Alkynes Ethers Alcohols Amides Neutral compound Ketones Aldehydes Nitro compounds Alkanes

Alkyl halides

compounds

Aromatic

What are possible functional groups?

Inert

compound

- (-) H_2O (+) NaOH
- (-) HCl (+) NaHCO₃

DNP: Aldehydes & Ketones

Procedure: Add 1 drop to 1 mL DNP solution.

Dissolve solid first in minimum 95% ethanol.

- ▶ POSITIVE: yellow to red precipitate
- NEGATIVE: clear colored solution (no change)

NOTES: this test is NOT for carbonyl groups

Beware of acetone false positives!

May be slow to precipitate

$$O_2N$$
 SOLUTION R $C=O+H_2N-NH-NO_2$ H^+ Aldehyde or ketone 2,4-Dinitrophenylhydrazine

$$O_2N$$
 PRECIPITATE

 R
 $C=N-NH-NO_2+H_2O$

2,4-Dinitrophenylhydrazone

chem.libretexts.org

Boiling Point

Procedure:

- 1) Fill bottom of test tube with liquid
- 2) Add a capillary with open tip down
- 3) Use rubber band to attach to thermometer
 - Make sure bottoms are leveled so the measured temperature is near to sample
- 4) Place sample inside Thiele tube with oil
- 5) Heat side arm using flame past boiling point to steady stream of bubbles
- 6) Remove heat and as setup cools, watch liquid goes up capillary.
 - Why does liquid go up capillary tube?
- Narrow down possible compounds ± 6° C

Beilstein: Halogens

Procedure:

- 1) Make a Cu wire with ring on one end
- 2) Heat ring over flame to remove contaminants
- 3) Dip wire in liquid or solid. Can wet wire with DI water for solids to stick
- 4) Burn sample over Bunsen burner
- POSITIVE: Bright green flame
- ▶ NEGATIVE: Orange flame

chem.libretexts.org

Ignition: Aromaticity

Procedure: Burn compound on spatula

► POSITIVE: Dark, black smoke

► NEGATIVE: Clean, yellow flame

NOTES: can be positive for double/triple bonds can be difficult to interpret

FedUni CLIPP

IR: solid film

Procedure

NOTE: solid must be soluble in methylene chloride

- 1) Dissolve 50 mg solid in 1 mL CH₂Cl₂
- 2) Add 3-5 drops onto a salt plate
- 3) Let solvent evaporate
- 4) Run IR with solid film (no second salt plate)

orgchemboulder.com

Normal for baselines to be lower in solid IR

IR: solid pellet

Canvas video

Solid is dispersed within a salt pellet

Procedure:

- Grind 1 mg solid and 75 mg KBr with mortar and pestle to fine powder
- 2) Screw in the bottom bolt into metal barrel
- 3) Add your ground sample
- 4) Tighten top screw with wrench and wait for 1 min.
 - → Salt fuses under high pressure
- 5) Loosen and remove screws carefully
 - → Pellet inside should be translucent
- 6) Run IR with pellet inside barrel

Sample on this bolt

Bottom" bolt halfway in

organicchem.org

IR: Nujol mineral oil

If all else fails, try this method

NOTE: oil has strong CH absorption

► Want to distinguish sample aromatic CH (>3000 cm⁻¹) and aliphatic CH (<3000 cm⁻¹)

Procedure

- 1) Grind a few mg solid with mortar and pestle
- 2) Add a few drops of Nujol mineral oil
- 3) Run between salt plates like a liquid sample to collect spectrum

chem.libretexts.org

Derivatives

$$O_2N$$
 SOLUTION

 R
 $C=O+H_2N-NH-NO_2 \xrightarrow{H^+}$

Aldehyde or ketone 2,4-Dinitrophenylhydrazine

- Reaction between unknown and known compound
- Use melting point to distinguish products
- Ex. DNP derivative

	O_2N	PRECIPITATE
R $C=N-$	-NH_	$NO_2 + H_2O$
R'		$= \sqrt{-NO_2 + N_2O}$

2,4-Dinitrophenylhydrazone

ALDEHYDES (Solid)	Derivatives			
ALDEHTDES (Solid)	MP	Semi-carbazone	2,4-DNP	Oxime
Phenylethanal (phenylacetaldehyde)	33	163	121	100
1-Naphthaldehyde	34	221	255	98
Piperonal (1,3-benzodioxole-5-carboxaldehyde)	35-39	234	266	146
2-Methoxybenzaldehyde (o-Anisaldehyde)	34-40	215	254	92
4-Diethylaminobenzaldehyde	37-41	241		93
3,4-Dichlorobenzaldehyde	39-42		301	120
3,4-Dimethoxybenzaldehyde	40-43	177	261	95
2-Nitrobenzaldehyde	42-44	256	301	102 (154)
4-Chlorobenzaldehyde	45-50	233	254	110(146)
2,3-Dimethoxybenzaldehyde	48-52	231		99

Obtaining your derivative

- ► Tell me unknown codename, solid or liquid, and which derivative
- Describe procedure and include key steps in your own words
- ▶ Be ready to answer questions to check your understanding of the procedure
- Melting point will be provided

Discussion day

- Prepare 4-5 min presentation for liquid or solid
- Optional 1 slide to show data/structures
- Covering the following:
 - 1) General properties (e.g. MP, BP)
 - 2) Chemical tests
 - 3) Spectroscopy
 - 4) Ambiguous results
 - 5) Derivatives
 - 6) Possible compounds
 - 7) Next steps
- Contribute to group discussion with comment or question twice

Questions?

CHEM 242 Unknowns: Spectroscopy

NMR

Tips:

- ► TMS may or may not be present. Reference to 0 ppm if it is
- Similar groups of hydrogens may overlap
- Beware of deuterium exchange: broad (lower integration) or missing peaks
- Watch out for impurities. Reference NMR impurities table
- Final integrations need to match molecule (3H for -CH₃ etc.)

Questions?

Identifying Spectroscopy Unknown

- 1) MS
 - Nitrogen?
 - ► Halogens: Br or Cl
 - Calculate # of carbons
 - Possible chemical formulas
 - Degree of unsaturation
- 2) IR
 - ► Functional groups
 - Solids: film, pellet, oil techniques
- 3) NMR
 - ▶ Rest of the molecule, hydrocarbon

Your spectroscopy unknown can be any molecule!

It is not confined the unknowns list for liquids and solids.

Also today:

Classification tests

Mass Spectrometry

(Mass of molecular ion:

2(7) + 1 - 0 - 9 + 2

Nitrogen

- Odd MW = odd # nitrogens (likely 1)
- Even MW = even # nitrogens (likely 0)

Halogen

- ► Intensity MW : M+2 peaks
- → 3:1 ³⁵Cl: ³⁷Cl
- ▶ 1:1 ⁷⁹Br : ⁸¹Br

Carbon

 C_7H_9N

Estimate by peak intensities:

$$\frac{(M+1)}{(MW) + (M+1)} \div 1.1\%$$

► 1.1% = ¹³C abundance

Chemical formulas

- ▶ Trial and error
- ▶ Don't forget oxygen! Reference IR

Degree of unsaturation

For C=C, C \equiv C, rings 2C+N-X-H+2

What should you do?

- 1. Lab manual has enough information
- 2. Plan what to ask before coming to your meeting with TA
- 3. Keep notes!!!!!
- 4. Keep track on timeline and deadlines.
- 5. This is a long project (it would take 3-4 weeks for in person lab), so invest your time and use your time wisely.

What can your TA do to help you?

- 1. Give you your test results **only** during 1-on-1 meeting during lab time
- 2. Answer related questions through email, office hours
- 3. Be your emotional support.